فریم ها (قاب ها) و پایه های ریس تعمیم یافته در فضاهای هیلبرت

thesis
abstract

در این پایان نامه ابتدا‏، پایه های عملگری یا به عبارت دیگر پایه های تعمیم یافته که ازاین ببعد g-پایه نامیده می شوند برای فضاهای هیلبرت معرفی شده است. سپس تمام مشخص سازی ها که در مورد پایه های برداری در فضاهای هیلبرت وجود دارند برای این نوع پایه با کمی تغییرات ارائه شده است.

similar resources

مشخص سازی قاب های تعمیم یافته و پایه های ریس تعمیم یافته در فضاهای هیلبرت

در این پایان نامه هدف معرفی عملگر پیش قاب q برای قاب های تعمیم یافته در فضای هیلبرت مختلط می باشد که این عملگر نقش مهمی را برای مطالعه ی قاب های تعمیم یافته و پایه های ریس تعمیم یافته ایفا می کند.با استفاده از عملگر پیش قاب، شرایط لازم و موثر را برای دنباله-های بسل تعمیم یافته، قاب های تعمیم یافته و پایه های ریس تعمیم یافته در فضاهای هیلبرت مختلط، که به ترتیب خصوصیاتی مشابه با دنباله های بسل، ق...

قاب ها و پایه های ریس تعمیم یافته

g-قاب ها، یک رده وسیع تر و در برگیرنده قاب های زیر فضایی، شبه قاب ها، قاب های گسسته و... هستند، در نتیجه مطالعه g-قاب ها و خواص شان ازاهمیت ویژه ای برخوردار است. معادل هایی برای g-قاب ها بیان نموده و نشان می دهیم g-قاب ها در بسیاری از خواص با قاب ها شریک هستند. همچنین مفهوم پایه های ریس و متعامد یکه را گسترش می دهیم. به هر g-قاب معمولی یک قاب نظیر می گردد که بسیاری از ویژگی های آن را متصور می ...

15 صفحه اول

قاب ها و پایه های ریس تعمیم یافته

همانطور که می دانیم پایه ی هیلبرتی یکی از مفاهیم بسیار مهم در یک فضای هیلبرت است. در عمل بدست آوردن چنین پایه ای برای یک فضای داده شده می تواند بسیار دشوار و یا حتی در برخی موارد غیر عملی باشد. مفهوم قاب یکی از مفاهیمی است که تا حد زیادی نیاز ما را به تعیین پایه هیلبرتی مرتفع می سازد. این مفهوم برای اولین بار در سال 1952 توسط دافین و شفر مطرح شد و آنها از آن به عنوان ابزاری در مطالعه سری های فو...

15 صفحه اول

ساختن فریم ها(قاب ها)و فریم های پیوندی بی رخنه در فضاهای هیلبرت

مطالب اصلی این پایان نامه مشخص سازی فریم های پیوندی به کمک فریم ها در یک فضای هیلبرت می باشد. از آنجایی که فریم های پیوندی در فضای هیلبرت یک نوع خاص از فریم ها از عملگرها می باشد بنابراین در عمل مشخص سازی آنها کار دشواری است. در این پایان نامه ابتدا فریم های پیوندی بی رخنه که بوسیله تصاویر متعامد روی یک خانواده از زیر ففضاها تعریف شده اند را توسط یک خانواده از فر یم های برداری در زیر فضاهای مشخ...

15 صفحه اول

فریم های(قابهای) تعمیم یافته دقیق در فضاهای هیلبرت

چکیده پایان نامه ( شامل خلاصه، اهداف، روش های اجرا و نتایج به دست آمده ): اخیرا g-فریم ها به عنوان یک تعمیم از فریم ها در فضاهای هیلبرت معرفی شده اند. g- فریم ها دارای تعداد زیادی خواص مشابه با فریم ها هستند ولی تمام خواص آن با فریم ها مشابهت ندارد. مثلا فریم های دقیق در فضاهای هیلبرت هم ارز پایه های ریس هستند ولی g-فریم های دقیق در این فضاها با پایه های g-ریس هم ارز نیستند. دراین پایان نامه م...

15 صفحه اول

قاب ها و پایه های زیرفضاها در فضاهای هیلبرت

در این پایان نامه‎‎نظریه قاب های ‎‎زیرفضاها را برای زیرفضاهای فضای هیلبرت تفکیک پذیر توسعه می دهیم. نشان خواهیم داد که برای هر قاب پارسوال زیرفضاهای ‎w در فضای هیلبرت h‎، یک فضای هیلبرت k که شامل h است‎ و یک پایه متعامد یکه n که w=p(n) وجود خواهد داشت که p‎ یک تصویر متعامد از k‎ به روی ‎‎h‎ است. یک تعریف جدید از تجزیه همانی اتمی در فضای هیلبرت ارائه می دهیم. ‎در‎ حالت خاص، یک عملگر تجزیه اتمی،...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد تهران مرکزی - دانشکده علوم پایه

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023